Razib Khan One-stop-shopping for all of my content

December 21, 2012

The causes of evolutionary genetics

A few days ago I was browsing Haldane’s Sieve,when I stumbled upon an amusing discussion which arose on it’s “About” page. This “inside baseball” banter got me to thinking about my own intellectual evolution. Over the past few years I’ve been delving more deeply into phylogenetics and phylogeography, enabled by the rise of genomics, the proliferation of ‘big data,’ and accessible software packages. This entailed an opportunity cost. I did not spend much time focusing so much on classical population and evolutionary genetic questions. Strewn about my room are various textbooks and monographs I’ve collected over the years, and which have fed my intellectual growth. But I must admit that it is a rare day now that I browse Hartl and Clark or The Genetical Theory of Natural Selection without specific aim or mercenary intent.

R. A. Fisher

Like a river inexorably coursing over a floodplain, with the turning of the new year it is now time to take a great bend, and double-back to my roots, such as they are. This is one reason that I am now reading The Founders of Evolutionary Genetics. Fisher, Wright, and Haldane, are like old friends, faded, but not forgotten, while Muller was always but a passing acquaintance. But ideas 100 years old still have power to drive us to explore deep questions which remain unresolved, but where new methods and techniques may shed greater light. A study of the past does not allow us to make wise choices which can determine the future with any certitude, but it may at least increase the luminosity of the tools which we have iluminate the depths of the darkness. The shape of nature may become just a bit less opaque through our various endeavors.

Figure from “Directional Positive Selection on an Allele of Arbitrary Dominance”, Teshima KM, Przeworski M

So what of this sieve of Haldane? As noted at  Haldane’s Sieve the concept is simple. Imagine two mutations, one which expresses a trait in a recessive fashion, and another in a dominant one. The sieve operates by favoring the emergence out of the low frequency zone where stochastic forces predominate of dominantly expressing variants (i.e., even if an allele confers a large fitness benefit, at low frequencies the power of random chance may still imply that it is highly likely to go extinct). An example of this would be lactase persistence, which in the modal  Eurasian variant seems to exhibit dominance. The converse case, where beneficial mutations are recessive in expression suffer from a structural problem where their benefit is more theoretical than realized.

The mathematics of this is exceedingly simple, a consequence of the Hardy-Weinberg dynamics of diploid random mating organisms. Let’s use the gene which is implicated in variation in lactase persistence as an example, LCT. Consider two alleles, LP and LNP, where the former confers persistence (one can digest lactose sugar as an adult), and the latter manifests the conventional mammalian ‘wild type’ (the production of lactase ceases as one leaves the life stage when nursing is feasible). LP is clearly the novel mutant. In a small population it is not unimaginable that by random chance the frequency of LP rises to ~10%. What now? At HWE you have:

p2 + 2pq + q2 = 1, where q = LP allele. At ~10% the numbers substituted would be:

(0.90)2 + 2(0.90)(0.10) + (0.10)2

This is where dominance or recessive expression is highly relevant. The reality is that LP is a dominant trait. So in this population the frequency of LP as a trait would be:

(0.10)2 + 2(0.90)(0.10) = 19%

Now imagine a model where LP is favored, but it expresses in a recessive fashion. Then the frequency of the trait would equal q2, the homozygote LP-allele proportion. That is, 1%. Though population genetics is often constructed on an algebraic foundation, the results lend themselves to intuition. A structural parameter endogenous to the genetic system, dominant or recessive expression, can have longstanding consequences in terms of the likely trajectory of the alleles. Selection only “sees” the trait, so a recessive trait with sterling qualities may as well be a trait with no qualities. In contrast, a dominantly expressed allele can cut like a scythe through a population, because every copy “counts.”

In preparation for this post I revisited the selection on Haldane’s Sieve in the encyclopediac Elements of Evolutionary Genetics. The authors note that this phenomenon, though of vintage character as these things can be reckoned is a field as young as evolutionary genetics, is still a live one. The dominance of favored mutations in wild populations, or the recessive character of deleterious ones in laboratory stock, may reflect the different regimes which these two genes pools are subject to. The nature of things is such that is easier to generate recessive mutations than dominant ones (i.e., loss is easier than gain), so the preponderance of dominant variants in wild stocks subject to positive selective pressure lends credence to the idea that evolutionary rather than development forces and constraints shape the genetic character of many species.

And yet things are not quite so tidy. Haldane’s Sieve, and the framework of dominant versus recessive alleles, operates differently in the area of sex chromosomes. In many lineages there is a ‘heterogametic sex’ which carries only one functional chromosome for most of the genome. In mammals this is the male (XY), while in birds this is the female (ZW). As males have only one functional copy of most genes on the sex chromosome, the masking effect of recessive expression does not apply to them in mammals. This may imply that because of the exposure of many deleterious recessive variants to natural selection within the heterogametic sex one would see different allelic distributions and genetic landscapes on these chromosomes (e.g., more rapid adaptation because of the exposure of nominally recessive alleles in the heterogametic sex, as well as more purifying selection on deleterious variants). But the reality is more complex, and the literature in this area is somewhat muddled. More precisely, it seems phylogenetically sensitive. Validation of the theory in mammals founders once one moves to Drosphila.

And that is why research in evolutionary genetics continues. The theory stimulates empirical exploration, and is tested against it. Much of the formal theory of classical evolutionary genetics, which crystallized in the years before World War II, is now gaining renewed relevance because of empirical testability in the era of big data and big computation. This is an domain where the past is not simply of interest to historians. Scientists themselves, chasing the next grant, and producing the expected stream of publications, may benefit from a little historical perspective by standing upon the shoulders of giants.

December 18, 2012

Buddy, can you spare some ascertainment?

The above map shows the population coverage for the Geno 2.0 SNP-chip, put out by the Genographic Project. Their paper outlining the utility and rationale by the chip is now out on arXiv. I saw this map last summer, when Spencer Wells hosted a webinar on the launch of Geno 2.0, and it was the aspect which really jumped out at me. The number of markers that they have on this chip is modest, only >100,000 on the autosome, with a few tens of thousands more on the X, Y, and mtDNA. In contrast, the Axiom® Genome-Wide Human Origins 1 Array Plate being used by Patterson et al. has ~600,000 SNPs. But as is clear by the map above Geno 2.0 is ascertained in many more populations that the other comparable chips (Human Origins 1 Array uses 12 populations). It’s obvious that if you are only catching variation on a few populations, all the extra million markers may not give you much bang for the buck (not to mention the biases that that may introduce in your population genetic and phylogenetic inferences).


To the left are the list of populations against which the Human Origins 1 Array was ascertained, and they look rather comprehensive to me. In contrast, for Geno 2.0 ‘ancestrally informative markers’ were ascertained on 450 populations. The ultimate question for me is this: is all the extra ascertainment on diverse and obscure groups worth it? On first inspection Geno 2.0′s number of SNPs looks modest as I stated, but in my experience when you quality control and merge different panels together you are often left with only a few hundred thousand SNPs in any case. 100-200,000 SNPs is also sufficient to elucidate relationships even in genetically homogeneous regions such as Europe in my experience (it’s more than enough for model-based clustering, and seems to be overkill for MDS or PCA). One issue that jumps out at me about the Affymetrix chip is that it is ascertained toward the antipodes. In contrast, Geno 2.0 takes into account the Eurasian heartland. I suspect, for example, that Geno 2.0 would be better for population or ancestry assignment for South Asians because it would have more informative markers for those populations.

Ultimately I can’t really say much more until I use both marker sets in different and similar contexts. Since Geno 2.0 consciously excludes many functional and medically relevant SNPs its utility is primarily in the domain of demographics and history. If the populations in question are well covered by the Human Origins 1 Array, I see no reason why one shouldn’t go with it. Not only does it have more information about biological function, but the number of markers are many fold greater. On the other hand, Geno 2.0 may be more useful on the “blank zones” of the Affy chip. Hopefully the Genographic Project results paper for Geno 2.0 will come out soon and I can pull down their data set and play with it.

Cite: arXiv:1212.4116

Unveiling the genealogical lattice

To understand nature in all its complexity we have to cut down the riotous variety down to size. For ease of comprehension we formalize with math, verbalize with analogies, and visualize with representations. These approximations of reality are not reality, but when we look through the glass darkly they give us filaments of essential insight. Dalton’s model of the atom is false in important details (e.g., fundamental particles turn out to be divisible into quarks), but it still has conceptual utility.

Likewise, the phylogenetic trees popularized by L. L. Cavalli-Sforza in The History and Geography of Human Genes are still useful in understanding the shape of the human demographic past. But it seems that the bifurcating model of the tree must now be strongly tinted by the shades of reticulation. In a stylized sense inter-specific phylogenies, which assume the approximate truth of the biological species concept (i.e., little gene flow across lineages), mislead us when we think of the phylogeny of species on the microevolutionary scale of population genetics. On an intra-specific scale gene flow is not just a nuisance parameter in the model, it is an essential phenomenon which must be accommodated into the framework.


This is on my mind because of the emergence of packages such as TreeMix and AdmixTools. Using software such as these on the numerous public data sets allows one to perceive the reality of admixture, and overlay lateral gene flow upon the tree as a natural expectation. But perhaps a deeper result is the character of the tree itself is torn asunder. The figure above is from a new paper, Efficient moment-based inference of admixture parameters and sources of gene flow, which debuts MixMapper. The authors bring a lot of mathematical heft to their exposition, and I can’t say I follow all of it (though some of the details are very similar to Pickrell et al.’s). But in short it seems that in comparison to TreeMix MixMapper allows for more powerful inference of a narrower set of populations, selected for exploring very specific questions. In contrast, TreeMix explores the whole landscape with minimal supervision. Having used the latter I can testify that that is true.

The big result from MixMapper is that it extends the result of Patterson et al., and confirms that modern Europeans seem to be an admixture between a “north Eurasian” population, and a vague “west Eurasian” population. Importantly, they find evidence of admixture in Sardinians, which implies that Patterson et al.’s original were not sensitive to admixture in putative reference populations (note that Patterson is a coauthor on this paper as well). The rub, as noted in the paper, is that it is difficult to estimate admixture when you don’t have “pure” ancestral reference populations. And yet here the takeaway for me is that we may need to rethink our whole conception of pure ancestral populations, and imagine a human phylogenetic tree as a series of lattices in eternal flux, with admixed nodes periodically expanding so as to generate the artifice of a diversifying tree. The closer we look, the more likely that it seems that most of the populations which have undergone demographic expansion in the past 10,000 years are also the products of admixture. Any story of the past 10,000 years, and likely the past 100,000 years, must give space at the center of the narrative arc lateral gene flow across populations.

Cite: arXiv:1212.2555 [q-bio.PE]

November 11, 2012

The Genographic Project’s Scientific Grants Program

While I was at Spencer Wells’ poster at ASHG I was primarily curious about bar plots. He’s got really good spatial coverage, so I’m moderately excited about the paper (though I didn’t see much explicit testing of phylogenetic hypotheses, which I think this sort of paper has to do now; we’re beyond PCA and bar plots only papers). That being said, Spencer was more interested in me promoting the Scientific Grants Program. Here’s some more information:

The Genographic Project’s Scientific Grants Program awards grants on a rolling basis for projects that focus on studying the history of the human species utilizing innovative anthropological genetic tools. The variety of projects supported by the scientific grants will aim to construct our ancient migratory and demographic history while developing a better understanding of the phylogeographic structure of world populations. Sample research topics could include subjects like the origin and spread of the Indo-European languages, genetic insights into Papua New Guinea’s high linguistic diversity, the number and routes of migrations out of Africa, the origin of the Inca, or the genetic impact of the spread of maize agriculture in the Americas.

Recipients will typically be population geneticists, students, linguists, and other researchers or scientists interested ...

Reflections on the evolution at ASHG 2012

As most readers know I was at ASHG 2012. I’m going to divide this post in half. First, the generalities of the meeting. And second, specific posters, etc.

Generalities:

- Life Technologies/Ion Torrent apparently hires d-bag bros to represent them at conferences. The poster people were fine, but the guys manning the Ion Torrent Bus were total jackasses if they thought it would be funny/amusing/etc. Human resources acumen is not always a reflection of technological chops, but I sure don’t expect organizational competence if they (HR) thought it was smart to hire guys who thought (the d-bags) it would be amusing to alienate a selection of conference goers at ASHG. Go Affy & Illumina!

- Speaking of sequencing, there were some young companies trying to pitch technologies which will solve the problem of lack of long reads. I’m hopeful, but after the Pacific Biosciences fiasco of the late 2000s, I don’t think there’s a point in putting hopes on any given firm.

- I walked the poster hall, read the titles, and at least skimmed all 3,000+ posters’ abstracts. No surprise that genomics was all over the place. But perhaps a moderate ...

August 28, 2012

Evolutionary & population genetics preprints – Haldane’s Sieve

OK, perhaps I can help with that. Dr. Coop speaks of the collaboration between himself & Dr. Joseph Pickrell, Haldane’s Sieve, which I added to my RSS days ago (and you can see me pushing it to my Pinboard). From the “About”:

As described above, most posts to Haldane’s Sieve will be basic descriptions of relevant preprints, with little to no commentary. All posts will have comment sections where discussion of the papers will be welcome. A second type of post will be detailed comments on a preprint of particular interest to a contributor. These posts could take the style of a journal review, or may simply be some brief comments. We hope they will provide useful feedback to the authors of the preprint. Finally, there will be posts by authors of preprints in which they describe their work and place it in broader context.

We ask the commenters to remember that by submitting articles to preprint servers the authors (often biologists) are taking a somewhat unusual step. Therefore, comments should be phrased in a constructive manner to aid the authors.

It might be helpful if other evolution/genetics bloggers ...

August 27, 2012

Europeans got less shaded in stages

The Pith: the evolution of lighter skin is complex, and seems to have occurred in stages. The current European phenotype may date to the end of the last Ice Age.

A new paper in Molecular Biology and Evolution, The timing of pigmentation lightening in Europeans, is rather interesting. It’s important because skin pigmentation has been one of the major successes of the first age of human genomics. In 2002 we really didn’t know the nature of normal human variation in skin color in terms of specific genes (basically, we knew about MC1R). This is what Armand Leroi observed in Mutants in 2005, wondering about our ignorance of such a salient trait. Within a few years though Leroi’s contention was out of date (in fact, while Mutants was going to press it became out of date) . Today we do know the genetic architecture of pigmentation. This is why GEDmatch can predict that my daughter’s eyes will be light brown from just her SNPs (they are currently hazel). This genomic yield was facilitated by the fact that pigmentation seems to be a trait where most human variation is ...

June 24, 2012

SMBE 2012

Dienekes has summaries up of human-related abstracts of Society for Molecular Biology & Evolution 2012.

1) Remember these are not papers, and some of the abstracts may never become papers, at least in recognizable form

2) Speaking of which, Estimating a date of mixture of ancestral South Asian populations:


Linguistic and genetic studies have demonstrated that almost all groups in South Asia today descend from a mixture of two highly divergent populations: Ancestral North Indians (ANI) related to Central Asians, Middle Easterners and Europeans, and Ancestral South Indians (ASI) not related to any populations outside the Indian subcontinent. ANI and ASI have been estimated to have diverged from a common ancestor as much as 60,000 years ago, but the date of the ANI-ASI mixture is unknown. Here we analyze data from about 60 South Asian groups to estimate that major ANI-ASI mixture occurred 1,200-4,000 years ago. Some mixture may also be older—beyond the time we can query using admixture linkage disequilibrium—since it is universal throughout the subcontinent: present in every group speaking Indo-European or Dravidian languages, in all caste levels, and in primitive tribes. After the ANI-ASI mixture that occurred ...

April 29, 2012

Pygmies: “old” populations, and a new “look” (?)

Over the years one issue that crops up repeatedly in human evolutionary genetics and paleoanthropology (or more precisely, the popular exposition of the topics in the media) is the idea that is that “population X are the most ancient Y.” X will always refer to a population within a larger set, Y, which is defined by relative marginalization or retention of older cultural folkways. So, for example, I have seen it said that the Andaman Islanders are the “most ancient Asian population.” Why? The standard model for a while now has been that non-Africans derive from a line of Africans which left the ancestral continent 50 to 100 thousand years ago, and began to diversify. Presumably Andaman Islanders have ancestry which goes back to this original dispersion, just as Europeans and Chinese do (revisions which suggest that Aboriginals may have been part of an earlier wave, still put the Andamanese in the second wave). The reason that the Andaman populations are termed ancient is pretty straightforward: they’re Asia’s last hunter-gatherers, literally chucking spears at outsiders. An ancient lifestyle gets conflated with ancient genetics.

This is a much bigger problem with the ...

April 8, 2012

Another look at mtDNA

The new article in The American Journal of Human Genetics, A “Copernican” Reassessment of the Human Mitochondrial DNA Tree from its Root, is open access, so you should check it out. The discussion gets to the heart of the matter:

Supported by a consensus of many colleagues and after a few years of hesitation, we have reached the conclusion that on the verge of the deep-sequencing revolution…when perhaps tens of thousands of additional complete mtDNA sequences are expected to be generated over the next few years, the principal change we suggest cannot be postponed any longer: an ancestral rather than a “phylogenetically peripheral” and modern mitogenome from Europe should serve as the epicenter of the human mtDNA reference system. Inevitably, the proposed change could raise some temporary inconveniences. For this reason, we provide tables and software to aid data transition.

What we propose is much more than a mere clerical change. We use the Ptolemaian geocentric versus Copernican heliocentric systems as a metaphor. And the metaphor extends further: as the acceptance of the heliocentric system circumvented epicycles in the orbits of planets, switching the mtDNA reference to an ancestral RSRS will end an academically inadmissible conjuncture where virtually all mitochondrial genome ...

March 26, 2012

The evolution of the human face

The face is an important aspect of our phenotype. So important that facial recognition is one of many innate reflexive cognitive competencies. By this, I mean that you can recognize a face in a gestalt manner, just like you can recognize a set of three marbles. You don’t have to think about it in a step-by-step fashion. Particular types of brain injuries can actually result in disablement of this faculty, and a minority of humans seem to lack it altogether at birth (prosopagnosia). That’s why I’ve long been interested in the genetic architecture and evolution of craniofacial traits. I long ago knew the potential range of pigmentation phenotypes for my daughter because both her parents have been genotyped, but when it comes to facial features we’re stuck with the old ‘blending inheritance’ heuristic. The most obvious importance of teasing apart the genetic architecture of craniofacial traits is forensics. It might not put the sketch artist out of a job, but it would be an excellent supplement to problematic eye witness reports.

But it isn’t just forensics. The issue has evolutionary relevance. It looks like that in terms of morphology our own lineage has had a lot of diversity up until recently. I’m thinking in particular of the ‘archaic’ looking humans recently discovered in China and Nigeria, who seem to have persisted down into the Holocene. More generally, humans as a whole have become more gracile over the last 10,000 years. Why? There are two extreme answers we can look to. First, gracile humans have replaced robust humans. Second, natural selection for gracility has resulted in the in situ evolution of many populations over the last ~10,000 years. An interesting aspect of this is that it looks as if many salient traits have been targets of selection, and therefore evolution and population differentiation.

Here the top 10 SNPs which deviate from the overall phylogenetic tree of population relationships in the HGDP data set:

 

SNP Chr Nearest gene Phenotype
rs1834640 15 SLC24A5 skin pigmentation
rs260690 2 EDAR hair morphology
rs10882168 10 CYP26A1/FER1L3 ?
rs4918664 10 CYP26A1/FER1L3 ?
rs2250072 15 SLC24A5 skin pigmentation
rs6583859 10 CYP26A1/FER1L3 ?
rs2384319 2 KIF3C ?
rs6500380 16 LONP2 ?
rs4497887 2 CNTNAP5 ?
rs9809818 3 FOXP1 ?

There are two things I want to say off the bat. First, a given SNP likely has many phenotypic effects. So the trait that we “see” in terms of its effect may not be the same trait that natural selection “sees.” Second, it is not a surprise that out of the traits that a given variant may affect the physically salient ones stand out; sometimes you do go looking where the light is shining on a dark street. We know that the lighter complexion of East and West Eurasians seems to be due to independent evolutionary events. In other words, they aren’t derived from common ancestry. When it comes to hair form the EDAR locus seems to be responsible for the distinctive characteristics of East Asians, and has been under recent selection.

What does all this have to do with craniofacial traits? Simple: the coarse and “skin deep” traits that physical anthropologists used decades ago to classify human beings have been rather informative to a first approximation of both details of phylogeny and natural selection. I see no reason why craniofacial traits should be any different. Humans have become more gracile, and some human populations seem to have been changing rather rapidly. I am highly skeptical that this is a neutral process. We care a great deal about facial features, and deviation from the norm can be arresting. If there has been change it is either due to population replacement, or selection (it could be a correlated response, or direct selection).

It is with that preamble that I offer up Mark Shriver’s abstract at the Modern Human Genetic Variation symposium:

The genes determining normal-range variation in human faces are arguably some of the most intrinsically interesting and fastest evolving. However, so far, little work has been focused on discovering these genes. Working under the hypothesis that genes causing Mendelian craniofacial dysmorphologies also may be important in determining normal-range facial-feature variation, and that those genes associated with population differences in facial features should have experienced greater levels of evolution (change in allele frequency), we have taken an admixture mapping/selection scan approach to identifying and studying the genes directly affecting facial features. We have applied the methods of automated quasi-landmark analyses, partial least squares regression, and individual genomic ancestry estimates to explore the distribution of facial features across two groups of human populations — West Africans and Europeans. Using three samples of admixed subjects (American; N=159, Brazilian; N=197, and Cape Verdean; N=248) we have modeled facial variation in the parental populations and compared the extent to which estimates of ancestry from the face compare to genomic-ancestry estimates. We also have tested six selection-nominated craniofacial candidate genes for functional effects on facial features using admixture mapping. In objective tests, two of these six genes (FGFR1 and TRPS1) show significant effects on facial features. In addition, human-observer ratings of the similarity between subjects and allele-specific facial morphs show the same effects for these two genes. Additionally, exaggerated allele-specific morphs based on normal-range variation in these genes recapitulates the syndromic facies of the craniofacial dysmorphologies with which they are associated.

I asked Mark about the nature of these genes and the traits. The paper is coming soon, but he told me that he does not think that the genetic architecture of craniofacial traits is going be as simple or easy to characterize as pigmentation genes. On the other hand, he’s reportedly capturing 35% of the African vs. European difference with his marker set, so that’s not trivial, and some of the individual loci have a strong enough effect that it’s visible by eye! Also, given the preserved extant diversity within populations (pigmentation genes are often disjoint across Africans and Europeans) he believes that the selection events are recent.

January 27, 2012

Out of Africa and out of Siberia

The latest edition of The American Journal of Human Genetics has two papers using “old fashioned” uniparental markers to trace human migration out of Africa and Siberia respectively. I say old fashioned because the peak novelty of these techniques was around 10 years ago, before dense autosomal SNP marker analyses, let alone whole genome sequencing. But mtDNA, passed down the maternal line, and Y chromosomes, passed from father to son, are still useful. Prosaically they’re useful because the data sets are now so large for these sets of markers after nearly 20 years of surveying populations. More technically because these two regions of the genome do not recombine they lend themselves to excellent representation as a tree phylogeny. Finally, mtDNA in particular is particularly amenable to estimates via molecular clock methodologies (it has a region with a higher mutational rate, so you can sample a larger range of variation over a given number of base pairs; you can use STRs, which mutate rapidly, for Y chromosomes, but there seems to be a lot of controversy in dating).

The papers are The Arabian Cradle: Mitochondrial Relicts of the First Steps along the Southern Route out of Africa and Mitochondrial DNA and Y Chromosome Variation Provides Evidence for a Recent Common Ancestry between Native Americans and Indigenous Altaians. Dienekes has already commented on the first paper. I am not going to take a detailed position on either, but I have to add that we need to be very careful of extrapolating from maternal or paternal lineages, and, assuming that population turn over is low enough that we can make phylogeographic inferences about the past from the present. For example, if you look at mtDNA South Asians as a whole strongly cluster with East Asians and not Europeans, while if you look at Y chromosomes you see the reverse. The whole genome gives a more mixed picture. Additionally, ancient DNA analyses in Northern Eurasia are showing strong discontinuities between past and present populations. So coalescence back to last common ancestor between two different lineages in two different regions may actually be due to diversity in a common source population more recently, which entered into demographic expansion and replaced other groups.

If you need the papers, email me. Some of you know the alphabet soup of haplogroups better than I do. Below are two figures which I think give the top line results.

January 24, 2012

When Eve met Creb

The excellent site io9 has a piece up today which is a fascinating indicator of the nature of popular science publications as a lagging indicator. It is a re-post of a piece published last April, How Mitochondrial Eve connected all humanity and rewrote human evolution. In it you have an encapsulation of a particular period in our understanding of human natural history through evolutionary genetics. Notice for example the focus on maternally transmitted lineages, mtDNA and Y chromosomes. And the citations on genealogy date to the middle aughts. The science is mostly correct as far as it goes in the details (or at least it is defensible, last I checked there was still debate as to the validity of the molecular clocks used for Y chromosomal lineages), but it misses the big picture of how we’ve reframed our understanding of the human past over the last few years. The distance between 2011 and 2009 is far greater in this sense than between 2009 and 1999 (or even 2009 and 1989!). The io9 piece is a reflection of the era before the paradigmatic rupture.

We are no longer talking just about African mtDNA Eve and her husband Y chromosomal Adam. I’m going to consciously avoid the term “revolutionize,” because the broad outlines of the old story certainly hold. Rather, as we are wont to do it seems that we became a bit too bold with some of our brush strokes, and elided fascinating and subtle elements of the landscape on the margins. There were Crebs, and other assorted Oogas and Boogas. And the painting is not completed yet. As such we can’t really draw any conclusions as to “what it all means,” aside from the fact that it’s fascinating.

Addendum: Someone in the comments observes in relation to a depiction of Eve in the story that “She’s awfully pale for an East African.” This is true on the merits, but the logic is kind of dumb. Why exactly do we think that people ~150,000 years ago looked anything like modern East Africans? It is very likely that Europeans ~35,000 years ago did not look like Daryl Hannah.

January 22, 2012

How the Amhara breathe differently

I have blogged about the genetics of altitude adaptation before. There seem to be three populations in the world which have been subject to very strong natural selection, resulting in physiological differences, in response to the human tendency toward hypoxia. Two of them are relatively well known, the Tibetans and the indigenous people of the Andes. But the highlanders of Ethiopia have been less well studied, nor have they received as much attention. But the capital of Ethiopia, Addis Ababa, is nearly 8,000 feet above sea level!

Another interesting aspect to this phenomenon is that it looks like the three populations respond to adaptive pressures differently. Their physiological response varies. And the more recent work in genomics implies that though there are similarities between the Asian and American populations, there are also differences. This illustrates the evolutionary principle of convergence, where different populations approach the same phenotypic optimum, though by somewhat different means. To my knowledge there has not been as much investigation of the African example. Until now. A new provisional paper in Genome Biology is out, Genetic adaptation to high altitude in the Ethiopian highlands:

We highlight several candidate genes for involvement in high-altitude adaptation in Ethiopia, including CBARA1, VAV3, ARNT2 and THRB. Although most of these genes have not been identified in previous studies of high-altitude Tibetan or Andean population samples, two of these genes (THRB and ARNT2) play a role in the HIF-1 pathway, a pathway implicated in previous work reported in Tibetan and Andean studies. These combined results suggest that adaptation to high altitude arose independently due to convergent evolution in high-altitude Amhara populations in Ethiopia.

The main shortcoming about this paper for me is that it does not highlight the evolutionary history of this adaptation. In the paper the authors compared the Amhara (a highland population) to nearby lowland populations. But did not explore the nature of the population structure and how it might have influenced the arc of adaptation. Are these very ancient adaptations? Or new ones? It seems that hominins have been resident in Ethiopian for millions of years. If this is so presumably there have been adaptations to higher elevations from time immemorial. But what if these adaptations are new?

More pointedly the Ethiopians can be modeled as a compound of an Arabian population with an indigenous East African one. If this is a genuine recent admixture event, then one might be able to ascertain via haplotype structure whether the adaptive variants derive from ancient African genetic variation, or whether they’re novel mutations. It seems that this paper is a good first step, but there’s a lot more to see here….

Citation: Genome Biology, doi:10.1186/gb-2012-13-1-r1

Image credit: Wikipedia

January 16, 2012

The milkmen

Dienekes and Maju have both commented on a new paper which looked at the likelihood of lactase persistence in Neolithic remains from Spain, but I thought I would comment on it as well. The paper is: Low prevalence of lactase persistence in Neolithic South-West Europe. The location is on the fringes of the modern Basque country, while the time frame is ~3000 BC. Table 3 shows the major result:

Lactase persistence is a dominant trait. That means any individual with at least one copy of the T allele is persistent. As Maju noted a peculiarity here is that the genotypes are not in Hardy-Weinberg Equilibrium. Specifically, there are an excess of homozygotes. Using the SJAPL location as a potentially random mating scenario you should expect ~7 T/C genotypes, not 2. Interestingly the persistent individual in the Longar location also a homozygote.


HWE makes a few assumptions. For example, no selection, migration, mutation, or assortative mating. Deviation from HWE is suggestive of one of these dynamics. The sample size here is small, but the deviation is not to be dismissed. Recall that lactase persistence has dominant inheritance patterns. If the trait was being positively selected for you would only need one copy. The enrichment of homozygotes is unexpected if selection in situ is occurring here. It can not be ruled out that one is observing the admixture of two distinct populations. One generation of random mating would generate HWE, but when populations hybridize in realistic scenarios this is not always a plausible assumption. Rather, assortative mating often persists over the generations, slowing down the diminishing of population substructure.

Stepping back from speculation in this case what can we say? First, the LCT locus has a large mutational target. The trait of lactase persistence has arisen multiple times via different mutational events across the Old World. But, there does seem to be one particular variant which is found from Spain to Northern India. There is some circumstantial evidence that the allele had its origin somewhere in Central Eurasia, but currently its modal frequency is in Northern Europe, Scandinavia and Germany. The region in the genome around this mutation is characterized by a very long haplotype. It is one of the most definitive loci as a candidate for natural selection in the human genome. There is now a fair amount of ancient DNA evidence that lactase persistence in Europe is a feature of the last ~5,000 years or so. Among the modern Basques the frequency of the allele is 66 percent.

For me the key issue is teasing apart the role of migration and selection in each specific case. It does not seem to be correct that the frequency of the -13910T LCT allele in Basques and Punjabis is reflective of the frequency of recent common ancestry. That implies that natural selection is at work at this locus. On the other hand, the haplotype which is present in both the Basque and Punjabis is likely to be descended from a common set of individuals, implying that there is a genealogical chain connecting these two very distinct and distant Eurasian populations. Therefore, we can potentially make some inferences about the power of migration in spreading distinctive alleles. Often we partition selection from genealogical information, because selection so often serves to distort the signal. But the genealogical patterns may lay at the heart of the distribution of different natural selective events at the LCT locus.

Overall, I would say that the results from ancient DNA are disordering and clouding simple elegant models. One hopes and presumes that as sample sizes increase in this domain we’ll start to see more clarity as new paradigms crystallize.

Citation: European Journal of Human Genetics, 10.1038/ejhg.2011.254

January 14, 2012

Reconstructing a generation unsampled

In the near future I will be analyzing the genotype of an individual where all four grandparents have been typed. But this got me thinking about my own situation: is there a way I could “reconstruct” my own grandparents? None of them are living. The easiest way to type them would be to obtain tissue samples from hospitals. This is not totally implausible, though in this case these would be Bangladeshi hospitals, so they might not have saved samples or even have a good record of hem. Another way would be to extract DNA from the burial site. This is not necessarily palatable. But assuming you did this, if you have access to a forensic lab it might be pretty easy (though I think most forensic labs using VNTRs, rather than SNP chips, so I don’t know if they’d touch every chromosome), I’m not sure that the quality would be optimal for more vanilla typing operations, especially for older samples which are likely to be contaminated with a lot of bacteria.

For me the simplest option is to look at relatives. Each of my grandparents happens to have had siblings, so there are many sets of relatives related to just each of those individuals of interest. I also have many cousins, so pooling all the genotypes together and using the information of a pedigree one could ascertain which chromosomal segments are likely to derive from a particular grandparent. To give a concrete example, my mother has a maternal cousin to whom she is quite close. By typing my mother and her cousin one could infer that the segments shared across the two individuals derive from the common maternal grandparents. Of course there’s a problem that cousins have a coefficient of relatedness of only 1/8th, so there is going to be a lot of information missing. But, if you had lots of cousins you could presumably reconstruct the genotypes far better.

 

But what if you didn’t have any of this? I came up with a crazy idea, and I want to throw it out there to see how crazy it is. The issue from the perspective of you, the indivdual without grandparental information, is that for either your mother or your father you don’t know which homologous chromosomes come from which parent (your grandparents, their parents). As it happens, everyone has a male parent and a female parent. So if you can assign a a chromosomal region as having come from the male, and another as having come from the female, then you can reconstruct some of your grandparents’ genotypes because you know their sexes. How can you make this determination?

Genomic imprinting. This is a phenomenon where genes from a given parent, often of a particular sex, are expressed, while those of the other sex are repressed (often it manifests in terms of methylation or lack of methylation). Therefore, if you have a gene, A, which is usually expressed if inherited from a male parent and repressed if it is inherited from a female parent then the state of that gene within a chromosomal region can be a “tag” for the sex of the parent of origin. With enough of these imprinted genes you can create a mosaic of the genome of the individual in terms of sex of origin. Obviously genomic regions from different sexes are from different parents. If you have enough children of these two parents you should be able to infer the whole genomes of these individuals.

The big reason this probably won’t work is that there just aren’t enough imprinted genes in the human genome. But what do readers think?

January 13, 2012

Between the desert and the sea


Zinedine Zidane, a Kabyle

There is a new paper in PLoS Genetics out which purports to characterize the ancestry of the populations of northern Africa in greater detail. This is important. The HGDP data set does have a North African population, the Mozabites, but it’s not ideal to represent hundreds of millions of people with just one group. The first author on this new paper is Brenna Henn, who was also first author on another paper with a diverse African data set. Importantly the data was posted online. Unfortunately though most of the populations didn’t have too many markers. This isn’t an issue in an of itself, but it becomes a big deal when trying to combine it with other data sets. If you limit the markers to those which intersect across two data sets you start to thin them down a lot, to the point where they’re not useful. Though the the results of the paper are worth talking about, the authors claim that they’ll be putting the data online. This is important because they used a large number of markers, so the intersections will be nice (I can, for example, envisage exploring the relationship between the North Africans and the IBS Iberian sample in the near future).

As for the paper itself, Genomic Ancestry of North Africans Supports Back-to-Africa Migrations:

Proposed migrations between North Africa and neighboring regions have included Paleolithic gene flow from the Near East, an Arabic migration across the whole of North Africa 1,400 years ago (ya), and trans-Saharan transport of slaves from sub-Saharan Africa. Historical records, archaeology, and mitochondrial and Y-chromosome DNA have been marshaled in support of one theory or another, but there is little consensus regarding the overall genetic background of North African populations or their origin and expansion. We characterize the patterns of genetic variation in North Africa using ~730,000 single nucleotide polymorphisms from across the genome for seven populations. We observe two distinct, opposite gradients of ancestry: an east-to-west increase in likely autochthonous North African ancestry and an east-to-west decrease in likely Near Eastern Arabic ancestry. The indigenous North African ancestry may have been more common in Berber populations and appears most closely related to populations outside of Africa, but divergence between Maghrebi peoples and Near Eastern/Europeans likely precedes the Holocene (>12,000 ya). We also find significant signatures of sub-Saharan African ancestry that vary substantially among populations. These sub-Saharan ancestries appear to be a recent introduction into North African populations, dating to about 1,200 years ago in southern Morocco and about 750 years ago into Egypt, possibly reflecting the patterns of the trans-Saharan slave trade that occurred during this period.

The model outline here is straightforward:

- A population of West Eurasian provenance migrated across the fringe of the southern Mediterranean >10,000 years B.P. (Maghrebi)

- This was later overlain by a later West Asian migration (Near Eastern)

- A third major element here seems to be Sub-Saharan African admixture, which these authors claim is rather new (post-Roman)

Two of the methods used will be familiar to readers of this weblog. They used ADMIXTURE to generate barplots which fractionate putative ancestral components given K number of components. Second, they also use PCA to visualize the largest components genetic variation within the samples on a plane.

As you “move up” the K’s you note that Maghrebi populations “split” from the Near Eastern reference, the Qataris. This is supported by the PCA, which shows that there is a dimension of variation which separates Near Easterners & Europeans from Maghrebis. The authors note that this dimension is orthogonal to the Sub-Saharan African vs. Eurasian component. That suggests that the putative Maghrebi component is likely to be part of the set of “Out of Africa” populations, rather than an African population which simply experienced continuous gene flow with West Eurasians.

They also estimate a Fst, a statistic which partitions genetic variation within and between groups. The value between Sub-Saharan Africans and Europeans is ~0.15 using HGDP SNP data, and between Europeans and East Asians ~0.10.  Using the Tuscans and Qataris as European and West Asian references against the North African populations along their east-west cline they estimate Fsts from ~0.03 to ~0.06. The higher end values are from populations which are less admixed with Near Eastern elements, and the colored polygons illustrate the domain generated by ADMIXTURE Fsts across inferred ancestral components. You also see in the chart estimated time of divergence. I won’t get into the assumptions in the model, but the authors do note that ~12,000 years B.P. seems to be the low bound estimate for when the Maghbrebis diverged from other West Eurasians. This is important, because it predates agriculture.

The final set of methods outlined in this paper looked at ancestry on a more fine-grained genomic scale. To the left you see a plot where each horizontal bar represents an individual’s chromosome 1 (among a set of North Africans). Each color in that bar indicates a component of ancestry (except the black, which are centromeres). This sort of information is important, because saying someone is 50% X and 50% Y summarizes information to the point of eliding it. An individual who is a first generation product of a Chinese-European marriage is going to have the same ancestral proportions as someone who is a Uyghur for those respective populations. But a fine-scale mapping of the genomic ancestry would look very different, because the history of the admixture is very different.

There are many inferences in the paper which I won’t address. Rather, let me focus on this one assertion:

After accounting for putative recent admixture (Figure 1), the indigenous Maghrebi component (k-based) is estimated to have diverged from Near Eastern/Europeans between 18–38 Kya (Figure 3), under a range of Ne and k values. We hence suggest that the ancestral Maghrebi population separated from Near Eastern/Europeans prior to the Holocene, and that the Maghrebi populations do not represent a large-scale demic diffusion of agropastoralists from the Near East.

This is not implausible on the face of it. The component of ancestry modal in the Mozabite HGDP sample tends to have a relatively high Fst in relation to other West Eurasian groups. I had wondered if this was due to ancient Sub-Saharan African admixture which had produced a particular stabilized hybrid, but these results indicate that the component is no closer than other West Eurasians. What I’m confused and skeptical about are the range of divergence times which different papers are producing which seem somewhat implausible taken together.

There are papers which posit that East Asians separated from Europeans ~25,000 years B.P. This is in the same range as the divergence between Maghrebis and West Eurasians, but the Maghrebi genetic distance (Fst) is about 1/2 as great. Also, these sets of results which generate a “bunching” together of the separation of many extant non-African lineages in the 20-40,000 year range imply very rapid differentiation after the “Out of Africa” event, if that event did occur ~50,000 years ago (at least for most Eurasians, even assuming a revised model whereby Australian Aboriginals derive from an earlier wave). One at a time any given divergence estimate may be broadly plausible, but the literature is just not particularly coherent on this matter, and it often seems archaeologically implausible.

Citation: Henn BM , Botigué LR , Gravel S , Wang W , Brisbin A , et al. 2012 Genomic Ancestry of North Africans Supports Back-to-Africa Migrations. PLoS Genet 8(1): e1002397. doi:10.1371/journal.pgen.1002397

Image Credit: Raphaël Labbé

January 7, 2012

PGD:2010s::IVF:1980s

Get ready for PGD, the acronym for preimplantation genetic diagnosis. We don’t really talk about “test tube babies” anymore. It’s “IVF,” and as American as apple pie (OK, perhaps as Israeli as falafel). Here’s the Ngrams result:


It’s just not that big of a deal anymore. But take a look at the order articles in The New York Times. There was a day that peopel were very worried about what “test tube babies” entailed. The end of the world as we know it? If that happened I don’t see anymore complaining.

The Globe & Mail in Canada has a very long piece on PGD, Unnatural selection: Is evolving reproductive technology ushering in a new age of eugenics? I do think it is ushering in a new age of eugenics, though it doesn’t go by that name. Many of the issues I’ve brought up on this weblog, such as the incentive for governments which fund national healthcare to take a deep interest in sifting through the range of future taxpayers and consumers of services, are explored. My basic instinct here is much more libertarian than most people. As a practical matter I’m rather close to a maximalist in terms of the amount of latitude I think parents should be given in selecting the nature of their offspring. But, I’m not a libertarian in an absolute philosophical sense, and I think a broader discussion in a society where the state and majority have coercive power over individuals is warranted.

There are two minor technical angles that I do want to bring up though:

- PGD seems to be ideally tailored already for people who marry their cousins. It would be relatively good at screening for the many recessive diseases which are common in the children of cousins. Also, it might even be able to reduce the fraction of runs of homozygosity through judicious selection. So, in the near future Muslim nations might be major consumers of PGD (Muslims as a whole are moderately anti-abortion, but they take a much more pragmatic line on these issues than the Roman Catholic church).

- PGD for trait selection runs into some statistical genetic difficulties. But, I wonder if perhaps PGD for decreased mutational load might be useful? With high coverage full genome scans could not one ascertain with good precision which genes have been subject to inherited or de novo deleterious mutations? It is generally assumed that loci where there is a major deleterious mutation masked by a normal functional copy still induce some fitness drag on the individual. The range in outcomes in siblings may be part of the natural variation in the mutational load. Parents may be tempted to lop off the asymmetrical-faced end of this.

December 26, 2011

The sons of Adam: spirit, not blood


Hominin increase in cranial capacity, courtesy of Luke Jostins


A few years ago a statistical geneticist at Cambridge’s Sanger Institute, Luke Jostins, posted the chart above using data from fossils on cranial capacity of hominins (the human lineage). As you can see there was a gradual increase in cranial capacity until ~250,000 years before the present, and then a more rapid increase. I should also note that from what I know about the empirical data, mean human cranial capacity peaked around the Last Glacial Maximum. Our brains have been shrinking, even relative to our body sizes (we’re not as large as we were during the Ice Age). But that’s neither here nor there. In the comments Jostins observes:

The data above includes all known Homo skulls, but none of the results change if you exclude the 24 Neandertals. In fact, you see the same results if you exclude Sapiens but keep Neandertals; the trends are pan-Homo, and aren’t confined to a specific lineage….


In other words: the secular increase in cranial capacity for our lineage extends millions of years back into the past, and also shifts laterally to “side-branches” (with our specific terminal node, H. sapiens sapiens, as a reference). This is why I often contend as an aside that humanity was to some extent inevitable. By humanity I do not mean H. sapiens sapiens, the descendants of a subset of African hominins who flourished ~100,000 years before the present, but intelligent and cultural hominins who would inevitably construct a technological civilization. The parallel trends across the different distinct branches of the hominin family tree which Luke Jostins observed indicated to me that our lineage was not special, but simply first. That is, if African hominins were exterminated by aliens ~100,000 years before the present, at some point something akin to H. sapiens sapiens in creativity and rapidity of cultural production would eventually arise (in all likelihood later, but possibly earlier!).

This does not mean that I think humanity was inevitable upon earth. For most of the history of this planet life was unicellular. I do not find it implausible that life on earth may have reached its “sell by” date due to astronomical events before the emergence of complex organisms (in fact, from what I have heard the end of life is going to occur ~1 billion years into the future due to the persistent increase in the energy output of Sol, not ~4 billion years in the future when Sol turns into a red giant). But, once complex organisms arose it does seem that further complexity was inevitable. This was Richard Dawkins’ case in The Ancestor’s Tale based simply on the descriptive record. But did the emergence of complex organisms necessarily entail the evolution of a technological species? I don’t think so. It took 500 million years for that to occur (it does not seem that coal resources formed hundreds of millions of years ago were tapped before humans). Given enough time obviously a technological species would evolve (e.g., extend the time of evaluation to 1 trillion years), but note that the earth has only ~5 billion years. Homo arrived on the scene in the last 20% of that interval.

Here I am positing at a minimum two not excessively likely or inevitable events over a 5 billion year time span which would lead to a hyper-technological and cultural species:

- The emergence of multicellular life

- The emergence of a lineage with the propensities of Homo

One Homo evolved and expanded outside of Africa I suspect that something of the form of a technological civilization became inevitable n this planet. We see parallelism in our own short post-Pleistocene epoch. Multiple human societies shifted from hunter-gatherers to agriculturalists over the past 10,000 years. The experience of the New World civilizations in particular illustrates that human universal tendencies are real. Not only were “game changing” cultural forms such as agriculture and literacy invented independently during the Holocene, but they were not invented during earlier interglacials (at least in all likelihood).


Khufu, Necho, Augustus and Napoleon

Why not? Well, consider the cultural torpidity of Paleolithic toolkits, which might persist for hundreds of thousands of years! I suspect some of this due to biology. But even over the Holocene we do perceive that cultural change has proceeded at a more rapid clip as time has progressed (i.e., at a minimum cultural change has been accelerating, and it may be that the rate of acceleration itself is increasing!). Consider that the civilization of ancient Egypt spanned at least 2,000 years. Though there are clear differences, the continuity between Old Kingdom Egypt and the last dynasties before the Assyrian and Persian conquests is very obvious to us, and would be obvious to ancient Egyptians. In contrast, 2,000 years separates us from Augustan Rome. The continuities here are clear as well (e.g., the Roman alphabet), but the cultural change is also clear (if you wish to argue that the early modern and modern period are sui generis, the 1,500 year interval from Augustan Rome to the Neo-Classical Renaissance would still be a stark contrast when compared against an ancient Egyptian reference*, despite the latter’s aping of the forms of the former).

So far I have focused on the vertical dimension of time. But there is also the lateral dimension, of cross-fertilization across the branches of the hominin family tree. The admixture of a Neanderthal element into non-Africans has started to become widely accepted recently, thanks to the confluence of archaeology and genomics in the field of ancient DNA. Even if one rejects the viability of Neanderthal admixture, the solution to the conundrum of these results must still entail stepping away from a simple model of recent exclusive origin of humans from a small African population. There are also hints of admixture with other archaic lineages on the Pacific fringe, and within Africa.

Until recently it was common to posit that modern humans, our own lineage, had some special genius which allowed it to sweep the field and extinguish our cousins. The qualitative result of Luke Jostins’ plot was known; that other hominin lineages also exhibited encephalization. In fact, it was a curious fact that Neanderthals on average had larger cranial capacities than anatomically modern humans. But the reality remained that we replaced them, ergo, we must have a special genius. Until the lack of distinction between Neanderthals and modern humans on loci implicated in the necessary (if not sufficient) competency of language that trait was a prime candidate for what made “us” special. But now I put “us” in quotation marks. The data do point to an overwhelming descent from an African or near-African population for non-Africans over the past 100,000 years. But the “archaic admixture” is not trivial. What was they are us, and we have become what they might have been.

For over two centuries there has been a debate in the West between monogenesis and polygenesis. The former is the position that humankind derives from one single pair or population (the former a straightforward recapitulation of the standard Abrahamic model). The latter is the position that different races of humans derive from different proto-humans, or, for the Christian polygenists that only Europeans descent from Adam and Eve (the other races being “non-Adamic”). Echoes of this conflict persist down to the present era. Many of the earlier partisans of “Out of Africa” have claimed that the proponents of multiregionalism were latter-day polygenists (not without total justification in some cases).

But the conflict between monogenism and polygenism is not the appropriate frame for what is being unveiled by reality before our eyes. What we see in the creation of modern humanity is a monogenic base inflected with the flavors of polygenism. Modern humans descend, by and large, from an expansion of an African population over the past 200,000 years. But on the margins there are other strands and filaments of ancestry which tie disparate populations back to lineages which branched off far earlier from the main trunk. At a minimum hundreds of thousands, and perhaps an order of 1 million years, before our own age. Today genomics avails of us the statistical power to extract out these discordant signals from the fluid “Out of Africa” narrative, but I would not be surprised if in the near future we stumble upon more and more “long branches” of less noteworthy quantity. Admixture is likely to be an old and persistent story in the hominin lineage, with only the most recent substantial bouts of separation and hybridization being of notice and curiosity at this moment in time.

What does all this mean? And why have I juxtaposed deep time natural history across the tree of life with inferences of relatively recent paleoanthropology? Let’s start with two propositions:

- Technological civilization, an outward manifestation of radically complex sentience, is not inevitable, though it is probable given certain preconditions (I believe that the existence of Homo increased its probability to ~1.0 over a reasonable time period)

- Radically complex sentience is not the monopoly of a particular exclusive lineage which accrues its genius from a particular specific forebear

John Farrell has pointed out the possible issues that the Roman Catholic church may have with the new model of human origins. But the Catholic church is only but a reflection of more general human strain of thought. Descent-groups, whether real or fictive, loom large in the human imagination. The evolutionary rationale for this is not too hard to explain, but we co-opt the importance of kinship in many different domains. Like evolution, human cultural forms simply take what is already present, and retrofit and modify elements to taste.

So why are humans special? And why do humans have inalienable rights? Many of us may not agree with the proposition that we are the descendants of Adam and Eve, and therefore we were granted the divine grace of eternal souls. But a hint of this logic can be found in the assumptions of many thinkers who do not agree with the propositions of the Roman Catholic church. Recently I listened to Sherry Turkle arguing against a reliance on “robot companions” which are able to exhibit the verisimilitude of human emotions for those who may be lacking in companionship (e.g., the aged and infirm). Though Turkles’ arguments were not without foundation, some of her arguments were of the form that “they are not us, they are not real, we are real. And that matters.” This is certainly true now, but will it always be? Who is this “they” and this “we”? And what does “real” mean? Are emotions a mysterious human quality, which will remain outside of the grasp of those who do not descend from Adam, literal or metaphorical?

If there arises a point where non-human sentience is a reality, do they have the same rights as we? Though the difference is radical in terms of quantity to some extent I think we know the answer: they are human by the way they are, not by the way their ancestors were. The “taint” of admixture with diverse lineages across the present human tree of life has not resulted in an updating of our understanding of human rights. That is because the idea that we are all the children of Adam, or the descendants of mitochondrial Eve, is a post facto justification for our understanding of what the rights of humanity are, adn what humanity is. And what it is is a particular ecological niche, a way of being, not being who descend down in a line of biological relationship from a particular person or persons.

* The cultural fundamentals of Old Kingdom Egypt arguably persisted in a living fossil form in the temple at Philae down to the 6th century A.D.! Therefore, a 3,500 year lineage of literature continuity.

Image credits: all public domain images from Wikpedia

November 30, 2011

Modern humans in Arabia >100,000 years ago

Filed under: Evolution,Genetics,Human Evolution,Human Evolutionary Genetics — Razib Khan @ 5:49 pm

The genetic model of the “Out of Africa” scenario is getting more complex. There may be two waves, as well as the likelihood of admixture between the Neo-Africans and “archaic” hominins, such the Neandertals and Denisovans. From what I can gather the genetic evidence is now converging upon the sequence of events where African populations diverge >100,000 years ago (e.g., a deep separation between the ancestors of the Bushmen and the ancestors of West Africans), and a radiation of non-Africans at most ~75,000 years ago, and more likely ~50,000 years ago. There are still many holes to be plugged in. While we’re waiting on genetics, here’s an interesting paper using archaeological methods in PLoS ONE, The Nubian Complex of Dhofar, Oman: An African Middle Stone Age Industry in Southern Arabia:

Despite the numerous studies proposing early human population expansions from Africa into Arabia during the Late Pleistocene, no archaeological sites have yet been discovered in Arabia that resemble a specific African industry, which would indicate demographic exchange across the Red Sea. Here we report the discovery of a buried site and more than 100 new surface scatters in the Dhofar region of Oman belonging to a regionally-specific African lithic industry – the late Nubian Complex – known previously only from the northeast and Horn of Africa during Marine Isotope Stage 5, ~128,000 to 74,000 years ago. Two optically stimulated luminescence age estimates from the open-air site of Aybut Al Auwal in Oman place the Arabian Nubian Complex at ~106,000 years ago, providing archaeological evidence for the presence of a distinct northeast African Middle Stone Age technocomplex in southern Arabia sometime in the first half of Marine Isotope Stage 5

Dienekes has extensive commentary up.

Older Posts »

Powered by WordPress